matrix_props.is_absolutely_k_incoherent ======================================= .. py:module:: matrix_props.is_absolutely_k_incoherent .. autoapi-nested-parse:: Checks if the matrix is absolutely $k$-incoherent. Functions --------- .. autoapisummary:: matrix_props.is_absolutely_k_incoherent.is_absolutely_k_incoherent Module Contents --------------- .. py:function:: is_absolutely_k_incoherent(mat, k, tol = 1e-15) Determine whether a quantum state is absolutely k-incoherent :footcite:`Johnston_2022_Absolutely`. Formally, for positive integers :math:`n` and :math:`k`, a mixed quantum state is said to be absolutely k-incoherent if :math:`U \rho U^* \in \mathbb{I}_{k, n}` for all unitary matrices :math:`U \in \text{U}(\mathbb{C}^n)`. This function checks if the provided density matrix is absolutely k-incoherent based on the criteria introduced in :footcite:`Johnston_2022_Absolutely` and the corresponding QETLAB functionality :footcite:`QETLAB_link`. When necessary, an SDP is set up via ``cvxpy``. The notion of absolute k-incoherence is connected to the notion of quantum state antidistinguishability as discussed in :footcite:`Johnston_2025_Tight`. .. rubric:: Examples .. jupyter-execute:: import numpy as np from toqito.matrix_props import is_absolutely_k_incoherent mat = np.array([[2, 1, 2], [1, 2, -1], [2, -1, 5]]) is_absolutely_k_incoherent(mat, 4) .. seealso:: :func:`.is_antidistinguishable`, :func:`.is_k_incoherent` .. rubric:: References .. footbibliography:: :param mat: Matrix to check for absolute k-incoherence. :param k: The positive integer indicating the absolute coherence level. :param tol: Tolerance for numerical comparisons (default is 1e-15). :raises ValueError: If the input matrix is not square. :return: True if the quantum state is absolutely k-incoherent, False otherwise.