perms.permute_systems ===================== .. py:module:: perms.permute_systems .. autoapi-nested-parse:: Permute systems is used to permute subsystems within a quantum state or an operator. Functions --------- .. autoapisummary:: perms.permute_systems.permute_systems Module Contents --------------- .. py:function:: permute_systems(input_mat, perm, dim = None, row_only = False, inv_perm = False) Permute subsystems within a state or operator. Permutes the order of the subsystems of the vector or matrix :code:`input_mat` according to the permutation vector :code:`perm`, where the dimensions of the subsystems are given by the vector :code:`dim`. If :code:`input_mat` is non-square and not a vector, different row and column dimensions can be specified by putting the row dimensions in the first row of :code:`dim` and the columns dimensions in the second row of :code:`dim`. If :code:`row_only = True`, then only the rows of :code:`input_mat` are permuted, but not the columns -- this is equivalent to multiplying :code:`input_mat` on the left by the corresponding permutation operator, but not on the right. If :code:`row_only = False`, then :code:`dim` only needs to contain the row dimensions of the subsystems, even if :code:`input_mat` is not square. If :code:`inv_perm = True`, then the inverse permutation of :code:`perm` is applied instead of :code:`perm` itself. .. rubric:: Examples For spaces :math:`\mathcal{A}` and :math:`\mathcal{B}` where :math:`\text{dim}(\mathcal{A}) = \text{dim}(\mathcal{B}) = 2` we may consider an operator :math:`X \in \mathcal{A} \otimes \mathcal{B}`. Applying the `permute_systems` function with vector :math:`[1,0]` on :math:`X`, we may reorient the spaces such that :math:`X \in \mathcal{B} \otimes \mathcal{A}`. For example, if we define :math:`X \in \mathcal{A} \otimes \mathcal{B}` as .. math:: X = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{pmatrix}, then applying the `permute_systems` function on :math:`X` to obtain :math:`X \in \mathcal{B} \otimes \mathcal{A}` yield the following matrix .. math:: X_{[1,0]} = \begin{pmatrix} 1 & 3 & 2 & 4 \\ 9 & 11 & 10 & 12 \\ 5 & 7 & 6 & 8 \\ 13 & 15 & 14 & 16 \end{pmatrix}. .. jupyter-execute:: import numpy as np from toqito.perms import permute_systems test_input_mat = np.arange(1, 17).reshape(4, 4) permute_systems(test_input_mat, [1, 0]) For spaces :math:`\mathcal{A}, \mathcal{B}`, and :math:`\mathcal{C}` where :math:`\text{dim}(\mathcal{A}) = \text{dim}(\mathcal{B}) = \text{dim}(\mathcal{C}) = 2` we may consider an operator :math:`X \in \mathcal{A} \otimes \mathcal{B} \otimes \mathcal{C}`. Applying the :code:`permute_systems` function with vector :math:`[1,2,0]` on :math:`X`, we may reorient the spaces such that :math:`X \in \mathcal{B} \otimes \mathcal{C} \otimes \mathcal{A}`. For example, if we define :math:`X \in \mathcal{A} \otimes \mathcal{B} \otimes \mathcal{C}` as .. math:: X = \begin{pmatrix} 1 & 2 & 3 & 4, 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\ 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \\ 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 \\ 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\ 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 \\ 49 & 50 & 51 & 52 & 53 & 54 & 55 & 56 \\ 57 & 58 & 59 & 60 & 61 & 62 & 63 & 64 \end{pmatrix}, then applying the `permute_systems` function on :math:`X` to obtain :math:`X \in \mathcal{B} \otimes \mathcal{C} \otimes \mathcal{C}` yield the following matrix .. math:: X_{[1, 2, 0]} = \begin{pmatrix} 1 & 5 & 2 & 6 & 3 & 7 & 4, 8 \\ 33 & 37 & 34 & 38 & 35 & 39 & 36 & 40 \\ 9 & 13 & 10 & 14 & 11 & 15 & 12 & 16 \\ 41 & 45 & 42 & 46 & 43 & 47 & 44 & 48 \\ 17 & 21 & 18 & 22 & 19 & 23 & 20 & 24 \\ 49 & 53 & 50 & 54 & 51 & 55 & 52 & 56 \\ 25 & 29 & 26 & 30 & 27 & 31 & 28 & 32 \\ 57 & 61 & 58 & 62 & 59 & 63 & 60 & 64 \end{pmatrix}. .. jupyter-execute:: import numpy as np from toqito.perms import permute_systems test_input_mat = np.arange(1, 65).reshape(8, 8) permute_systems(test_input_mat, [1, 2, 0]) :raises ValueError: If dimension does not match the number of subsystems. :param input_mat: The vector or matrix. :param perm: A permutation vector. :param dim: The default has all subsystems of equal dimension. :param row_only: Default: :code:`False` :param inv_perm: Default: :code:`True` :return: The matrix or vector that has been permuted.