states.domino ============= .. py:module:: states.domino .. autoapi-nested-parse:: Produce a domino state. Functions --------- .. autoapisummary:: states.domino.domino Module Contents --------------- .. py:function:: domino(idx) Produce a domino state :footcite:`Bennett_1999_QuantumNonlocality, Bennett_1999_UPB`. The orthonormal product basis of domino states is given as .. math:: \begin{equation} \begin{aligned} |\phi_0\rangle = |1\rangle |1 \rangle, \qquad |\phi_1\rangle = |0 \rangle \left(\frac{|0 \rangle + |1 \rangle}{\sqrt{2}} \right), & \qquad |\phi_2\rangle = |0\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right), \\ |\phi_3\rangle = |2\rangle \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right), \qquad |\phi_4\rangle = |2\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right), & \qquad |\phi_5\rangle = \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) |0\rangle, \\ |\phi_6\rangle = \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) |0\rangle, \qquad |\phi_7\rangle = \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) |2\rangle, & \qquad |\phi_8\rangle = \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) |2\rangle. \end{aligned} \end{equation} Returns one of the following nine domino states depending on the value of :code:`idx`. .. rubric:: Examples When :code:`idx = 0`, this produces the following Domino state .. math:: |\phi_0 \rangle = |11 \rangle |11 \rangle. Using :code:`|toqito⟩`, we can see that this yields the proper state. .. jupyter-execute:: from toqito.states import domino domino(0) When :code:`idx = 3`, this produces the following Domino state .. math:: |\phi_3\rangle = |2\rangle \left(\frac{|0\rangle + |1\rangle} {\sqrt{2}}\right) Using :code:`|toqito⟩`, we can see that this yields the proper state. .. jupyter-execute:: from toqito.states import domino domino(3) .. rubric:: References .. footbibliography:: :raises ValueError: Invalid value for :code:`idx`. :param idx: A parameter in [0, 1, 2, 3, 4, 5, 6, 7, 8] :return: Domino state of index :code:`idx`.