channels.dephasing¶
Generates the dephasing channel.
Functions¶
|
Produce the partially dephasing channel. |
Module Contents¶
- channels.dephasing.dephasing(dim, param_p=0)¶
Produce the partially dephasing channel.
(Section: The Completely Dephasing Channel from [1]).
The Choi matrix of the completely dephasing channel that acts on
dim
-by-dim
matrices.Let \(\Sigma\) be an alphabet and let \(\mathcal{X} = \mathbb{C}^{\Sigma}\). The map \(\Delta \in \text{T}(\mathcal{X})\) defined as
\[\Delta(X) = \sum_{a \in \Sigma} X(a, a) E_{a,a}\]for every \(X \in \text{L}(\mathcal{X})\) is defined as the completely dephasing channel.
Examples
The completely dephasing channel maps kills everything off the diagonal. Consider the following matrix
\[\begin{split}\rho = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{pmatrix}.\end{split}\]Applying the dephasing channel to \(\rho\) we have that
\[\begin{split}\Phi(\rho) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 11 & 0 \\ 0 & 0 & 0 & 16 \end{pmatrix}.\end{split}\]This can be observed in
|toqito⟩
as follows.import numpy as np from toqito.channels import dephasing from toqito.channel_ops import apply_channel test_input_mat = np.arange(1, 17).reshape(4, 4) apply_channel(test_input_mat, dephasing(4))
array([[ 1., 0., 0., 0.], [ 0., 6., 0., 0.], [ 0., 0., 11., 0.], [ 0., 0., 0., 16.]])
We may also consider setting the parameter
p = 0.5
.import numpy as np from toqito.channels import dephasing from toqito.channel_ops import apply_channel test_input_mat = np.arange(1, 17).reshape(4, 4) apply_channel(test_input_mat, dephasing(4, 0.5))
array([[ 1. , 1. , 1.5, 2. ], [ 2.5, 6. , 3.5, 4. ], [ 4.5, 5. , 11. , 6. ], [ 6.5, 7. , 7.5, 16. ]])
References
- Parameters:
dim (int) – The dimensionality on which the channel acts.
param_p (float) – Default is 0.
- Returns:
The Choi matrix of the dephasing channel.
- Return type:
numpy.ndarray