matrix_props.is_absolutely_k_incoherent¶
Checks if the matrix is absolutely $k$-incoherent.
Functions¶
|
Determine whether a quantum state is absolutely k-incoherent [1]. |
Module Contents¶
- matrix_props.is_absolutely_k_incoherent.is_absolutely_k_incoherent(mat, k, tol=1e-15)¶
Determine whether a quantum state is absolutely k-incoherent [1].
Formally, for positive integers \(n\) and \(k\), a mixed quantum state is said to be absolutely k-incoherent if \(U \rho U^* \in \mathbb{I}_{k, n}\) for all unitary matrices \(U \in \text{U}(\mathbb{C}^n)\).
This function checks if the provided density matrix is absolutely k-incoherent based on the criteria introduced in [1] and the corresponding QETLAB functionality [2]. When necessary, an SDP is set up via
cvxpy
.The notion of absolute k-incoherence is connected to the notion of quantum state antidistinguishability as discussed in [3].
Examples
import numpy as np from toqito.matrix_props import is_absolutely_k_incoherent mat = np.array([[2, 1, 2], [1, 2, -1], [2, -1, 5]]) is_absolutely_k_incoherent(mat, 4)
True
See also
References
- Parameters:
mat (numpy.ndarray) – Matrix to check for absolute k-incoherence.
k (int) – The positive integer indicating the absolute coherence level.
tol (float) – Tolerance for numerical comparisons (default is 1e-15).
- Raises:
ValueError – If the input matrix is not square.
- Returns:
True if the quantum state is absolutely k-incoherent, False otherwise.
- Return type:
bool